Research progress on porous transition metalcompounds- based nanomaterials
DUAN Si- bin1,CHENG Ming2,WANG Rong- ming1
1. School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China 2. SMIC Integrated Circuit Manufacturing Beijing Co. Ltd., Beijing 100176, China
Abstract:With excellent physicochemical performances, the porous transition metal compounds- based nanomaterials, not only retain the original advantages of nano- components, but also avoid the serious aggregation problems. The topics are focused on the research progress in the field of porous transition metal compounds- based nanomaterials around the world. Controlled synthesis methods to obtain porous transition metal compounds with various architectures are summarized in the review, including solvothermal, template and metal- organic frameworks derived methods. Finally, the challenges faced in this field are summarized and expectations are given for the future development.
[1]Vij V, Sultan S, Harzandi A M, et al.Nickel-based electrocatalysts for energy-related applications: oxygen reduction,oxygen evolution,and hydrogen evolution reactions[J].ACS Catalysis, 2017, 7(10):7196-7225
[2]Nie Y, Li L, Wei Z.Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J].Chemical Society Reviews, 2015, 44(8):2168-2201
[3]Shi Y, Zhang B.Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction[J].Chemical Society Reviews, 2016, 45(6):1529-1541
[4]Choudhary N, Li C, Moore J, et al.Asymmetric supercapacitor electrodes and devices[J].Advanced Materials, 2017, 29(21):1605336-
[5]Chen D, Wang Q F, Wang R M, et al.Ternary oxide nanostructured materials for supercapacitors: a review[J].Journal of Materials Chemistry A, 2015, 3(19):10158-10173
[6]Simon P, Gogotsi Y.Materials for electrochemical capacitors[J].Nature Materials, 2008, 7(11):845-854
[7]Luc W, Jiao F.Synthesis of nanoporous metals,oxides,carbides,and sulfides: beyond nanocasting[J].Accounts of Chemical Research, 2016, 49(7):1351-1358
[8]Shen L F, Wang J, Xu G Y, et al.NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors[J].Advanced Energy Materials, 2015, 5(3):1400977-
[9]Zhou K, Zhou W J, Yang L J, et al.Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: a general and effective approach[J].Advanced Functional Materials, 2015, 25(48):7530-7538
[10]Guan B Y, Kushima A, Yu L, et al.Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors[J].Advanced Materials, 2017, 29(17):1605902-
[11]Liu H, He Q, Jiang H, et al.Electronic structure reconfiguration toward pyrite NiS2 via engineered heteroatom defect boosting overall water splitting[J].ACS Nano, 2017, 11(11):11574-11583
[12]Roth W J, Gil B, Makowski W, et al.Layer like porous materials with hierarchical structure[J].Chemical Society Reviews, 2016, 45(12):3400-3438
[13]Liu J, Nai J, You T, et al.The flexibility of an amorphous cobalt hydroxide nanomaterial promotes the electrocatalysis of oxygen evolution reaction[J].Small, 2018, 14(17):e1703514-
[14]Sheng J, Kang J, Hu Z, et al.Octahedral Pd nanocages with porous shells converted from Co(OH)2 nanocages with nanosheet surfaces as robust electrocatalysts for ethanol oxidation[J].Journal of Materials Chemistry A, 2018, 6(32):15789-15796
[15] Li Z, Zhang L, Ge X, et al.Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries[J].Nano Energy, 2017, 32:494-502
[16]Li Y, Shi J.Hollow-structured mesoporous materials: chemical synthesis,functionalization and applications[J].Advanced Materials, 2014, 26(20):3176-3205
[17]Lou X W, Archer L A, Yang Z C.Hollow micro-nanostructures: synthesis and applications[J].Advanced Materials, 2008, 20(21):3987-4019
[18]Yang X Y, Chen L H, Li Y, et al.Hierarchically porous materials: synthesis strategies and structure design[J].Chemical Society Reviews, 2017, 46(2):481-558
[19]Yang H, Zhang Y, Hu F, et al.Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability[J].Nano Letters, 2015, 15(11):7616-7620
[20]Meher S K, Rao G R.Ultralayered Co3O4 for high-performance supercapacitor applications[J].The Journal of Physical Chemistry C, 2011, 115(31):15646-15654
[21]Yu H, Guan C, Rui X, et al.Hierarchically porous three-dimensional electrodes of CoMoO4 and ZnCo2O4 and their high anode performance for lithium ion batteries[J].Nanoscale, 2014, 6(18):10556-10561
[22]Zhang G, Lou X W.General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors[J].Advanced Materials, 2013, 25(7):976-979
[23]Zhu L P, Wen Z, Mei W M, et al.Porous CoO nanostructure arrays converted from rhombic Co(OH)F and needle-like Co(CO0)05(OH)·0.11H2O and their electrochemical properties[J].The Journal of Physical Chemistry C, 2013, 117(40):20465-20473
[24]Shen L F, Che Q, Li H S, et al.Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage[J].Advanced Functional Materials, 2014, 24(18):2630-2637
[25] Zou R J, Zhang Z Y, Yuen M F, et al.Three-dimensional-networked NiCo2S4 nanosheet array/carbon cloth anodes for high-performance lithium-ion batteries[J].NPG Asia Materials, 2015, 7:e195-
[26] Hu L, Zhong H, Zheng X R, et al.CoMn2O4 spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries[J].Scientific Reports, 2012, 2:986-
[27]Gao X H, Zhang H X, Li Q G, et al.Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting[J].Angewandte Chemie-International Edition, 2016, 55(21):6290-6294
[28]Shen L, Yu L, Yu X Y, et al.Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors[J].Angewandte Chemie-International Edition, 2015, 54(6):1868-1872
[29]Ma F X, Hu H, Wu H B, et al.Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties[J].Advanced Materials, 2015, 27(27):4097-4101
[30]Ma F X, Yu L, Xu C Y, et al.Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties[J].Energy & Environmental Science, 2016, 9(3):862-866
[31] Shen L, Yu L, Wu H B, et al.Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties[J].Nature Communications, 2015, 6:6694-
[32]Boyjoo Y, Wang M, Pareek V K, et al.Synthesis and applications of porous non-silica metal oxide submicrospheres[J].Chemical Society Reviews, 2016, 45(21):6013-6047
[33]Nai J, Wang S, Bai Y, et al.Amorphous Ni(OH)2 nanoboxes: fast fabrication and enhanced sensing for glucose[J].Small, 2013, 9(18):3147-3152
[34]Liu J, Xu X J, Hu R Z, et al.Uniform hierarchical Fe3O4@polypyrrole nanocages for superior lithium ion battery anodes[J].Advanced Energy Materials, 2016, 6(13):1600256-
[35]Xia C, Alshareef H N.Self-templating scheme for the synthesis of nanostructured transition-metal chalcogenide electrodes for capacitive energy storage[J].Chemistry of Materials, 2015, 27(13):4661-4668
[36]Zhu Y, Kockrick E, Ikoma T, et al.An efficient route to rattle-type Fe3O4@SiO2 hollow mesoporous spheres using colloidal carbon spheres templates[J].Chemistry of Materials, 2009, 21(12):2547-2553
[37]Lou X W, Yuan C, Archer L A.Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: cavity size tuning and functionalization[J].Small, 2007, 3(2):261-265
[38]Wu Z C, Yu K, Zhang S D, et al.Hematite hollow spheres with a mesoporous shell: controlled synthesis and applications in gas sensor and lithium ion batteries[J].The Journal of Physical Chemistry C, 2008, 112(30):11307-11313
[39]Uchaker E, Zhou N, Li Y W, et al.Polyol-mediated solvothermal synthesis and electrochemical performance of nanostructured V2O5 hollow microspheres[J].The Journal of Physical Chemistry C, 2013, 117(4):1621-1626
[40]Liu Y, Chen Z, Shek C H, et al.Hierarchical mesoporous MnO2 superstructures synthesized by soft-interface method and their catalytic performances[J].ACS Applied Materials & Interfaces, 2014, 6(12):9776-9784
[41]Gyger F, Hubner M, Feldmann C, et al.Nanoscale SnO2 hollow spheres and their application as a gas-sensing material[J].Chemistry of Materials, 2010, 22(16):4821-4827
[42]Wu Z G, Zhong Y J, Li J T, et al.l-Histidine-assisted template-free hydrothermal synthesis of α-Fe2O3 porous multi-shelled hollow spheres with enhanced lithium storage properties[J].Journal of Materials Chemistry A, 2014, 2(31):12361-12367
[43]Su D W, Dou S X, Wang G X.Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion batteries[J].Journal of Materials Chemistry A, 2014, 2(29):11185-11194
[44]Hoskins B F, Robson R.Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rodsA reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4'',4'''-tetracyanotetraphenylmethane]BF4.xC6H5NO2[J].Journal of the American Chemical Society, 1990, 112(4):1546-1554
[45]Yaghi O M, Li H.Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J].Journal of the American Chemical Society, 1995, 117(41):10401-10402
[46]Kaneti Y V, Tang J, Salunkhe R R, et al.Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks[J].Advanced Materials, 2017, 29(12):1604898-
[47]Liu L, Wei Q, Yu X, et al.Metal-organic framework-derived Co3O4Au heterostructure as a catalyst for efficient oxygen reduction[J].ACS Applied Materials & Interfaces, 2018, 10(40):34068-34076
[48]Jin R, Li X, Sun Y, et al.Metal-organic frameworks-drived Co2P@N-C@rGO with dual protection layers for improved sodium storage[J].ACS Applied Materials & Interfaces, 2018, 10(17):14641-14648
[49]Wang Q, Liu Z, Zhao H, et al.MOF-derived porous Ni2P nanosheets as novel bifunctional electrocatalysts for the hydrogen and oxygen evolution reactions[J].Journal of Materials Chemistry A, 2018, 6(38):18720-18727
[50]Jayakumar A, Antony R P, Wang R, et al.MOF-derived hollow cage NixCo3-xO4 and their synergy with graphene for outstanding supercapacitors[J].Small, 2017, 13(11):1603102-n
[51]Yu H, Fan H, Yadian B, et al.General approach for MOF-derived porous spinel AFe2O4 hollow structures and their superior lithium storage properties[J].ACS Applied Materials & Interfaces, 2015, 7(48):26751-26757
[52]Guo W, Sun W, Wang Y.Multilayer CuO@NiO hollow spheres: microwave-assisted metal-organic-framework derivation and highly reversible structure-matched stepwise lithium storage[J].ACS Nano, 2015, 9(11):11462-11471
[53]Zhou Y X, Chen Y Z, Cao L, et al.Conversion of a metal-organic framework to N-doped porous carbon incorporating Co and CoO nanoparticles: direct oxidation of alcohols to esters[J].Chemical Communications, 2015, 51(39):8292-8295
[54]Wang Y, Wang C, Wang Y, et al.Superior sodium-ion storage performance of Co3O4@nitrogen-doped carbon: derived from a metal–organic framework[J].Journal of Materials Chemistry A, 2016, 4(15):5428-5435
[55]Yu X Y, Yu L, Wu H B, et al.Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties[J].Angewandte Chemie-International Edition, 2015, 54(18):5331-5335
[56]Jiang Z, Sun H, Qin Z, et al.Synthesis of novel ZnS nanocages utilizing ZIF-8 polyhedral template[J].Chemical Communications, 2012, 48(30):3620-3622
[57]Ming F W, Liang H F, Shi H H, et al.MOF-derived Co-doped nickel selenideC electrocatalysts supported on Ni foam for overall water splitting[J].Journal of Materials Chemistry A, 2016, 4(39):15148-15155
[58]Gadipelli S, Guo Z X.Tuning of ZIF-derived carbon with high activity,nitrogen functionality,and yield - a case for superior CO2 capture[J].ChemSusChem, 2015, 8(12):2123-2132
[59] Wu H B, Xia B Y, Yu L, et al.Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production[J].Nature Communications, 2015, 6(6512):-
[60]Liu M, Li J.Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen[J].ACS Applied Materials & Interfaces, 2016, 8(3):2158-2165
[61]Wang T, Shi L, Tang J, et al.A Co3O4-embedded porous ZnO rhombic dodecahedron prepared using zeolitic imidazolate frameworks as precursors for CO2 photoreduction[J].Nanoscale, 2016, 8(12):6712-6720
[62]Li C, Chen T Q, Xu W J, et al.Mesoporous nanostructured Co3O4 derived from MOF template: a high-performance anode material for lithium-ion batteries[J].Journal of Materials Chemistry A, 2015, 3(10):5585-5591
[63]Salunkhe R R, Tang J, Kamachi Y, et al.Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework[J].ACS Nano, 2015, 9(6):6288-6296
[64]Hu L, Yan N, Chen Q, et al.Fabrication based on the Kirkendall effect of Co3O4 porous nanocages with extraordinarily high capacity for lithium storage[J].Chemistry-A European Journal, 2012, 18(29):8971-8977
[65]Han Y, Zhao M L, Dong L, et al.MOF-derived porous hollow Co3O4 parallelepipeds for building high-performance Li-ion batteries[J].Journal of Materials Chemistry A, 2015, 3(45):22542-22546
[66]Tang J, Wu S, Wang T, et al.Cage-type highly graphitic porous carbon-Co3O4 polyhedron as the cathode of lithium-oxygen batteries[J].ACS Applied Materials & Interfaces, 2016, 8(4):2796-2804
[67] Hsu S H, Li C T, Chien H T, et al.Platinum-free counter electrode comprised of metal-organic-framework (MOF)-derived cobalt sulfide nanoparticles for efficient dye-sensitized solar cells (DSSCs)[J].Scientific Reports, 2014, 6:6983-
[68]Li S, Peng S, Huang L, et al.Carbon-coated Co3+-rich cobalt selenide derived from ZIF-67 for efficient electrochemical water oxidation[J].ACS Applied Materials & Interfaces, 2016, 8(32):20534-20539
[69]Wang C, Zhu M W, Liu H, et al.A general method for mass and template-free production of hierarchical metal oxide spheres at room-temperature[J].RSC Advances, 2014, 4(46):24176-24182
[70]Mondal A K, Su D, Chen S, et al.A microwave synthesis of mesoporous NiCo2O4 nanosheets as electrode materials for lithium-ion batteries and supercapacitors[J].ChemPhysChem, 2015, 16(1):169-175
[71]Shi F, Li L, Wang X L, et al.Metal oxidehydroxide-based materials for supercapacitors[J].RSC Advances, 2014, 4(79):41910-41921
[72]Li X, Xiong S, Li J, et al.Mesoporous NiO ultrathin nanowire networks topotactically transformed from α-Ni(OH)2 hierarchical microspheres and their superior electrochemical capacitance properties and excellent capability for water treatment[J].Journal of Materials Chemistry, 2012, 22(28):14276-14283
[73]Zhou X, Shen X, Xia Z, et al.Hollow fluffy Co3O4 cages as efficient electroactive materials for supercapacitors and oxygen evolution reaction[J].ACS Applied Materials & Interfaces, 2015, 7(36):20322-20331
[74]Cheng G H, Yang W F, Dong C Q, et al.Ultrathin mesoporous NiO nanosheet-anchored 3D nickel foam as an advanced electrode for supercapacitors[J].Journal of Materials Chemistry A, 2015, 3(33):17469-17478
[75]Wu S, Hui K S, Hui K N, et al.Ultrathin porous NiO nanoflake arrays on nickel foam as an advanced electrode for high performance asymmetric supercapacitors[J].Journal of Materials Chemistry A, 2016, 4(23):9113-9123
[76] An C H, Wang Y J, Huang Y N, et al.Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique[J].Nano Energy, 2014, 10:125-134
[77]Hu H, Guan B, Xia B, et al.Designed formation of Co3O4NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties[J].Journal of the American Chemical Society, 2015, 137(16):5590-5595
[78]Zhang Y, Ma M, Yang J, et al.Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors[J].Nanoscale, 2014, 6(16):9824-9830
[79]Li C, Balamurugan J, Thanh T D, et al.D hierarchical CoO@MnO2 core–shell nanohybrid for high-energy solid state asymmetric supercapacitors[J].Journal of Materials Chemistry A, 2017, 5(1):397-408
[80]Shen J F, Ji J, Dong P, et al.Novel FeNi2S4TMD-based ternary composites for supercapacitor applications[J].Journal of Materials Chemistry A, 2016, 4(22):8844-8850
[81]Su X R, Xu Y Y, Liu J L, et al.Controlled synthesis of Ni025Co0.75(OH)2 nanoplates and their electrochemical properties[J].CrystEngComm, 2015, 17(26):4859-4864
[82] Zhou D, Su X R, Boese M, et al.Ni(OH)2@Co(OH)2 hollow nanohexagons: controllable synthesis, facet-selected competitive growth and capacitance property[J].Nano Energy, 2014, 5:52-59
[83]Su X R, Gao C Z, Cheng M, et al.Controllable synthesis of Ni(OH)2Co(OH)2 hollow nanohexagons wrapped in reduced graphene oxide for supercapacitors[J].RSC Advances, 2016, 6(99):97172-97179
[84]Cheng M, Duan S B, Fan H S, et al.From channeled to hollow CoO octahedra: controlled growth,structural evolution and energetic applications[J].CrystEngComm, 2016, 18(36):6849-6859
[85]Cheng M, Fan H, Song Y, et al.Interconnected hierarchical NiCo2O4 microspheres as high-performance electrode materials for supercapacitors[J].Dalton Transactions, 2017, 46(28):9201-9209
[86] Cheng M, Duan S, Fan H, et al.Core@shell CoO@Co3O4 nanocrystals assembling mesoporous microspheres for high performance asymmetric supercapacitors[J].Chemical Engineering Journal, 2017, 327:100-108
[87]Chen X, Chen D, Guo X, et al.Facile growth of caterpillar-like NiCo2S4 nanocrystal arrays on nickle foam for high-performance supercapacitors[J].ACS Applied Materials & Interfaces, 2017, 9(22):18774-18781
[88]Huang H B, Luo S H, Liu C L, et al.High-surface-area and porous Co2P nanosheets as cost-effective cathode catalysts for Li-O2 batteries[J].ACS Applied Materials & Interfaces, 2018, 10(25):21281-21290
[89]Huang J, Chen J, Yao T, et al.CoOOH nanosheets with high mass activity for water oxidation[J].Angewandte Chemie-International Edition, 2015, 54(30):8722-8727
[90]Wang H Y, Hsu Y Y, Chen R, et al.Ni3+-induced formation of active NiOOH on the spinel Ni-Co oxide surface for efficient oxygen evolution reaction[J].Advanced Energy Materials, 2015, 5(10):1500091-
[91]Long X, Ma Z J, Yu H, et al.Porous FeNi oxide nanosheets as advanced electrochemical catalysts for sustained water oxidation[J].Journal of Materials Chemistry A, 2016, 4(39):14939-14943
[92]Liang H F, Li L S, Meng F, et al.Porous two-dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting[J].Chemistry of Materials, 2015, 27(16):5702-5711
[93]Song J H, Zhu C Z, Xu B Z, et al.Bimetallic cobalt-based phosphide zeolitic imidazolate framework: CoPx phase-dependent electrical conductivity and hydrogen atom adsorption energy for efficient overall water splitting[J].Advanced Energy Materials, 2017, 7(2):1601555-
[94]Popczun E J, McKone J R, Read C G, et al.Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J].Journal of the American Chemical Society, 2013, 135(25):9267-9270
[95]Popczun E J, Read C G, Roske C W, et al.Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles[J].Angewandte Chemie-International Edition, 2014, 53(21):5427-5430
[96]Wang J, Cui W, Liu Q, et al.Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting[J].Advanced Materials, 2016, 28(2):215-230
[97]Zhu Y P, Liu Y P, Ren T Z, et al.Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation[J].Advanced Functional Materials, 2015, 25(47):7337-7347